Spanning trees with pairwise nonadjacent endvertices
نویسندگان
چکیده
A spanning tree of a connected graph G is said to be an independency tree if all its endvertices are pairwise nonadjacent in G. We prove that a connected graph G has no independency tree if and only if G is a cycle, a complete graph or a complete bipartite graph the color classes of which have equal cardinality.
منابع مشابه
Closure for spanning trees and distant area
A k-ended tree is a tree with at most k endvertices. Broersma and Tuinstra [3] have proved that for k ≥ 2 and for a pair of nonadjacent vertices u, v in a graph G of order n with degG u + degG v ≥ n − 1, G has a spanning k-ended tree if and only if G + uv has a spanning k-ended tree. The distant area for u and v is the subgraph induced by the set of vertices that are not adjacent with u or v. W...
متن کاملOn a Spanning Tree with Specified Leaves
Let k ≥ 2 be an integer. We show that if G is a (k + 1)-connected graph and each pair of nonadjacent vertices in G has degree sum at least |G| + 1, then for each subset S of V (G) with |S| = k, G has a spanning tree such that S is the set of endvertices. This result generalizes Ore’s theorem which guarantees the existence of a Hamilton path connecting any two vertices.
متن کاملA simple existence criterion for normal spanning trees in infinite graphs
A spanning tree of an infinite graph is normal if the endvertices of any chord are comparable in the tree order defined by some arbitrarily chosen root. (In finite graphs, these are their ‘depth-first search’ trees; see [3] for precise definitions.) Normal spanning trees are perhaps the most important single structural tool for analysing an infinite graph (see [4] for a good example), but they ...
متن کاملSpanning paths in hypercubes
Given a family {ui, vi}i=1 of pairwise distinct vertices of the n-dimensional hypercube Qn such that the distance of ui and vi is odd and k ≤ n− 1, there exists a family {Pi}i=1 of paths such that ui and vi are the endvertices of Pi and {V (Pi)}i=1 partitions V (Qn). This holds for any n ≥ 2 with one exception in the case when n = k + 1 = 4. On the other hand, for any n ≥ 3 there exist n pairs ...
متن کاملRainbow spanning trees in properly coloured complete graphs
In this short note, we study pairwise edge-disjoint rainbow spanning trees in properly edge-coloured complete graphs, where a graph is rainbow if its edges have distinct colours. Brualdi and Hollingsworth conjectured that every Kn properly edge-coloured by n−1 colours has n/2 edge-disjoint rainbow spanning trees. Kaneko, Kano and Suzuki later suggested this should hold for every properly edge-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 170 شماره
صفحات -
تاریخ انتشار 1997